Zhao, H., Yu, C., Tang, J., Wu, W. and Yang, Q. (2020). Determination of the

graphical origin of maize (Zea mays L.) using mineral element fingerprints,

rnal of Science of Food Agriculture, 100, pp. 1294–1300.

Xu, Z., Gao, L. and Hao, B. (August 2009). A fungal phylogeny based on 82

mplete genomes using the composition vector method, BMC Evolutionary

logy, 9, pp. 195.

Wen, S., Symmans, W. F., Pusztai, L. and Coombes, K. R. (2009). The

modality index: a criterion for discovering and ranking bimodal signatures from

cer gene expression profiling data, Cancer Informatics, 7, pp. 199–216.

and Kadarmideen, H. N. (2020). Metabolite Genome-Wide Association Study

GWAS) and Gene-Metabolite Interaction Network Analysis Reveal Potential

markers for Feed Efficiency in Pigs, Metabolites, 10, pp. 201.

Rekaya, R. (2010). LSOSS: detection of cancer outlier differential gene

ression, Biomarker insights, 5, pp. 69–78.

Wani, A. and MD’Ambrosio, S. (1993). Cell type-specific expression of the O6-

ylguanine- DNA alkyltransferase gene in normal human liver tissues as revealed

n situ hybridization, Carcinogenesis, 14, pp. 737–741.

M., Dulak, A., Yang, Z. R., Al-Watban, A., Bradford, J. R. and Dry, J. R. (2016).

lti-omic measurement of mutually exclusive loss-of-function enriches for

didate synthetic lethal gene pairs, BMC Genomics, 17, pp. 65.

S. (2005). Applied Linear Regression, (John Wiley & Sons, New York).

R. (2011). Statistical Pattern Recognition, (third Edition, Willey).

d Chen, H. (2018). Comparative functional genomics analysis of bHLH gene

mily in rice, maize and wheat, BMC Plant Biology, 18, pp. 309.

J. C. and Lesk, A. M. (2003). Prediction of protein function from protein

uence and structure, Quarterly Reviews of Biophysics, 36, pp. 307–340.

and Seffens, W. (1998). Using a neural network to backtranslate amino acid

uences, Electronic Journal of Biotechnology, pp. 3.

E. T. (1923). On a new method of graduation, Procedings of Edinburgh

thematica Society, 41, pp. 63–75.

W. H., Street, W. N. and O. L. (1994). Mangasarian. Machine learning

hniques to diagnose breast cancer from fine-needle aspirates, Cancer Letters, 77,

163–171.

W. H., Street, W. N. and O. L. (1995). Mangasarian. Image analysis and machine

ning applied to breast cancer diagnosis and prognosis, Analytical and

antitative Cytology and Histology, 17, pp. 77–87.

. (2002). A New Kind of Science, (Champaign, IL, Wolfram Media).

Taccone, F., Villois, P., Scheetz, M. H., Rhodes, N. J., Briscoe, S., McWhinney,

Nunez-Nunez, M., Ungerer, J., Lipman, J. and Roberts, J. A. (2020). β-Lactam

rmacodynamics in Gram-negative bloodstream infections in the critically ill,

rnal of Antimicrobial Chemotherapy, 75, pp. 429–433.

P., Aurikko, J. P., and Kelly, D. P. (2004). A challenge for 2 first century

lecular biology and biochemistry: what are the causes of obligate autotrophy

methantropgy? FEMS Microbiology Reviews, 28, pp. 335–352.